Light – 2022 Nov O Level 5054

1. Nov/2022/Paper_11,12/No.24,22

A mirror is placed in the path of a ray of light.

Through which angle does the direction of the ray of light change?

- **A** 40°
- **B** 90°
- **C** 100°
- **D** 140°

2. Nov/2022/Paper_12/No.24

A thin converging lens forms a real, focused image of an object, as shown.

Which distance is equal to the focal length of the lens?

- A LW
- B LX
- C LY
- D LZ

3. Nov/2022/Paper_12/No.23

A ray of light in water is refracted at the surface into air.

Which diagram shows the angle of incidence i and the angle of refraction r?

4. Nov/2022/Paper_12/No.25

Which ray diagram shows the action of a diverging lens?

5. Nov/2022/Paper 21/No.8

A parallel beam of light travelling in air is incident on a glass lens.

The beam is perpendicular to the lens as shown in Fig. 8.1.

The dashed line P indicates the position of the lens. The centre of the lens is dot C.

Fig. 8.1

(a) The lens is a diverging lens.

On Fig. 8.1:

- (i) indicate the shape of the lens by drawing the outline of the lens around dashed line P [1]
- (ii) draw the path taken by each ray of light after it passes through the lens. [2]
- (b) Diverging lenses are used to correct short-sight.
 - (i) Fig. 8.2 is a simplified diagram of a short-sighted eye. Light from a distant object strikes the eye lens and enters the eye.

On Fig. 8.2, continue the three rays in the eye until they reach the back of the eye.

Fig. 8.2

[2]

https://solvedpapers.co.uk

(i		State how the image of a distant object detected by a normal eye differs from the image detected by the short-sighted eye.
(ii	-	Explain how a diverging lens corrects the sight of a short-sighted eye viewing a distant object.
		[1]
(c) T	he	focal length of the diverging lens is 4.0 cm.
A	n o	bject of height 3.5 cm is placed 6.0 cm from the centre of the lens.
(Fig. 8.3 is a full-scale diagram drawn on a grid, on which the dashed line L represents the lens and the arrow O the object.
11cm:		
		Fig. 8.3
		By drawing on Fig. 8.3, find the position of the image I of object O. Draw image I and label it I.
(i	i)	Explain whether the image produced is real or virtual.

https://solvedpapers.co.uk

(iii)	On the grid in Fig. 8.3, write an E in a position from which an eye can see the image. [1]
(iv)	Determine the linear magnification produced.

linear magnification = [2]

[Total: 15]