solvedpapers.co.uk

<u>Series – 2022 O Level Additional Math</u>

- 1. June/2022/Paper_11/No.7
 - (a) The first three terms of an arithmetic progression are $\lg 3$, $3 \lg 3$, $5 \lg 3$. Given that the sum to n terms of this progression can be written as 256 $\lg 81$, find the value of n. [5]

solvedpapers.co.uk

(b) DO NOT USE A CALCULATOR IN THIS PART OF THE QUESTION.

The first three terms of a geometric progression are $\ln 256$, $\ln 16$, $\ln 4$. Find the sum to infinity of this progression, giving your answer in the form $p \ln 2$. [4]

solvedpapers.co.uk

2. June/2022/Paper_12/No.5

The first three terms, in ascending powers of x, in the expansion of $\left(1 + \frac{x}{6}\right)^{12} (2 - 3x)^3$ can be written in the form $8 + px + qx^2$, where p and q are constants. Find the values of p and q. [8]

- 3. June/2022/Paper_21/No.5
 - (a) (i) Write down, in ascending powers of x, the first three terms in the expansion of $(1+4x)^n$. Simplify each term. [2]

(ii) In the expansion of $(1+4x)^n(1-4x)$ the coefficient of x^2 is 6032. Given that n > 0, find the value of n.

(b) Find the term independent of x in the expansion of $\left(\frac{x}{2} - \frac{8}{x^4}\right)^{10}$. [2]

4. June/2022/Paper_22/No.10

- (a) A geometric progression has first term a and common ratio r, where r > 0. The second term of this progression is 8. The sum of the third and fourth terms is 160.
 - (i) Show that r satisfies the equation $r^2 + r 20 = 0$. [4]

(ii) Find the value of a.

(b) An arithmetic progression has first term p and common difference 2. The qth term of this progression is 14.

A different arithmetic progression has first term p and common difference 4. The sum of the first q terms of this progression is 168.

Find the values of p and q.

[6]