<u>Differentiation and integration – 2022 O Level Additional Math</u>

1. June/2022/Paper_11/No.2

A particle moves in a straight line such that its displacement, s metres, from a fixed point, at time t seconds, $t \ge 0$, is given by $s = \left(1 + 3t\right)^{-\frac{1}{2}}$.

(a) Find the exact speed of the particle when t = 1. [3]

(b) Show that the acceleration of the particle will never be zero. [2]

2. June/2022/Paper_11/No.10

The normal to the curve $y = \tan\left(3x + \frac{\pi}{2}\right)$ at the point *P* with coordinates (p, -1), where 0 , meets the*x*-axis at the point*A*and the*y*-axis at the point*B*. Find the exact coordinates of the mid-point of*AB*.

- 3. June/2022/Paper_12/No.7(b)
 - (b) Find $\int_2^a \frac{8-3x}{(x-1)^2(2x+3)} dx$ where a > 2. Give your answers in the form $c + \ln d$, where c and d are functions of a.

4. June/2022/Paper_12/No.9

The normal to the curve $y = \frac{\ln(3x^2 + 2)}{x + 1}$, at the point *A* on the curve where x = 0, meets the *x*-axis at point *B*. Point *C* has coordinates $(0, 3 \ln 2)$. Find the gradient of the line *BC* in terms of $\ln 2$. [9]

5. June/2022/Paper_21/No.7

Variables x and y are such that $y = \frac{(1+\sin 3x)^4}{\sqrt{x}}$. Use differentiation to find the approximate change in y when x increases from 1.9 to 1.9+h, where h is small. [6]

- 6. June/2022/Paper_21/No.10
 - (a) Differentiate $x \ln x 2x$ with respect to x. Simplify your answer. [2]

(b) A curve is such that $\frac{d^2y}{dx^2} = \left(\frac{x+1}{\sqrt{x}}\right)^2$. It is given that $\frac{dy}{dx} = \frac{e^2}{2} + 2e$ at the point $\left(e, \frac{e^3}{6} + e^2\right)$. Using your answer to **part (a)**, find the exact equation of the curve.

7. June/2022/Paper_22/No.7

Differentiate $y = \frac{e^{4x} \tan x}{\ln x}$ with respect to x. [4]

8. June/2022/Paper_22/No.11

The diagram shows part of the line y = 1 and one complete period of the curve $y = 1 + \cos x$, where x is in radians. The line PQ is a tangent to the curve at P and at Q. The line QR is parallel to the y-axis. Area A is enclosed by the line y = 1 and the curve. Area B is enclosed by the line y = 1, the line PQ and the curve.

Given that $\operatorname{area} A$: $\operatorname{area} B$ is 1:k find the exact value of k. [9]

9. June/2022/Paper_22/No.11

A curve is such that $\frac{d^2y}{dx^2} = \left(\frac{\sqrt{x}+1}{\sqrt[4]{x}}\right)^2$. Given that the gradient of the curve is $\frac{4}{3}$ at the point (1,-1), find the equation of the curve.