<u>Vectors and transformations – 2022 O Level Math D 4024</u>

1. Nov/2022/Paper_4024/11/No.21

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$$

$$\mathbf{A} + 2\mathbf{B} = \begin{pmatrix} 1 & 5 \\ 10 & 12 \end{pmatrix}$$

(a) Find B.

(b) Find A^{-1} .

2. Nov/2022/Paper_4024/12/No.23

Adam and Ben buy tickets for the cinema and the theatre.

(a) Adam buys 5 cinema tickets and 4 theatre tickets. Ben buys 7 cinema tickets and 9 theatre tickets.

Complete the matrix, X, to represent this information.

Cinema Theatre $\mathbf{X} = \left(\begin{array}{c} \text{Adam} \\ \text{Ben} \end{array} \right)$

[1]

(b) Cinema tickets cost \$11 each and theatre tickets cost \$30 each. The matrix Y represents this information.

$$\mathbf{Y} = \begin{pmatrix} 11\\30 \end{pmatrix}$$

(i) P = XY

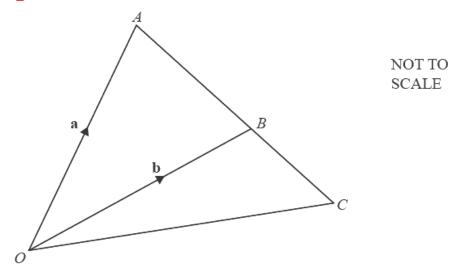
Find the matrix **P**.

 $\mathbf{P} = [2]$

(ii) Explain what the elements in matrix P represent.

.....[1

3. Nov/2022/Paper_4024/12/No.26



 \overrightarrow{OAC} is a triangle and B is a point on AC such that AB : BC = 3 : 2. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Find \overrightarrow{OC} in terms of a and b, giving your answer in its simplest form.

 $\overrightarrow{OC} = \dots$ [3]

(b) D is a point on OC such that $\overrightarrow{OD} = \mathbf{b} - \frac{2}{5}\mathbf{a}$.

Show that *OABD* is a trapezium.

4	Nov	/2022	/Paper	4024	/21	/No	6
╼.	INUV	12022	rapei	4024	/ ,	/ INO.	U

- (a) The position vector of point A is $\binom{4}{7}$ and the position vector of point B is $\binom{9}{2}$.
 - (i) Find the column vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(ii) Find $|\overrightarrow{AB}|$.

$$\left|\overrightarrow{AB}\right| = \dots [2]$$

(iii) ABCD is a parallelogram with sides AB, BC, CD and DA.

$$\overrightarrow{BC} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$
.

Find the coordinates of point C and point D.

$$C = (\dots, \dots, \dots)$$

$$D = (\dots, \dots, \dots)$$
 [2]

solvedpapers.co.uk

(b) P is the point (r, 4) and Q is the point (t, u).

The midpoint of line PQ is (1, 3).

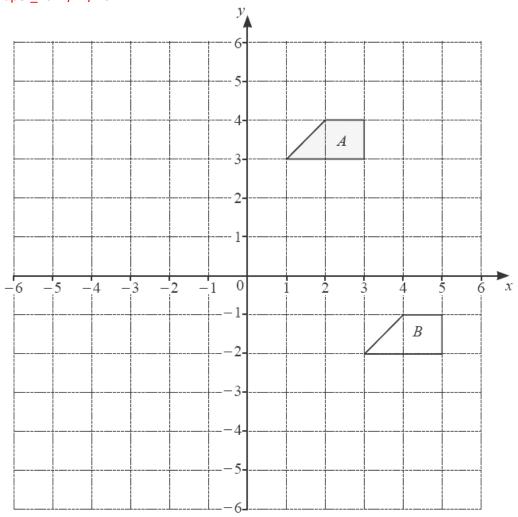
The gradient of line PQ is $-\frac{1}{4}$.

Find the value of each of r, t and u.

$$r = \dots r$$

$$u = \dots [4]$$

5. Nov/2022/Paper_4024/21/No.7



(a) Describe fully the single transformation that maps shape A onto shape B.

(b) Reflect shape A in the x-axis. [1]

(c) Enlarge shape A by scale factor 2, centre (5, 4). [2]

(d) Transformation P is represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. P maps shape A onto shape C.

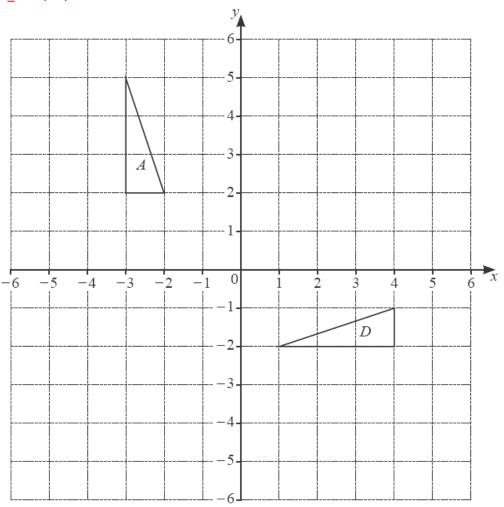
(i) Draw and label shape C.

(ii) Describe fully the single transformation that maps shape A onto shape C.

[3]

(iii) Find the matrix representing the transformation that maps shape C onto shape A.

6. Nov/2022/Paper_4024/22/No.6



(a) Reflect triangle A in the line x = 1.

Label the image B. [2]

(b) Triangle A is mapped onto triangle D by a combination of two transformations. Triangle A is first mapped onto triangle C by transformation Y.

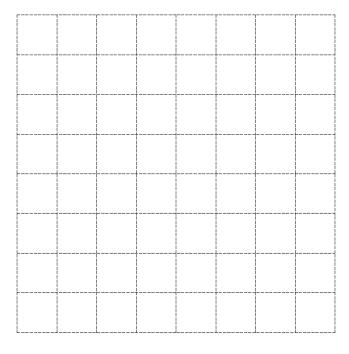
Triangle C is then mapped onto triangle D by a translation of $\begin{pmatrix} 6 \\ 1 \end{pmatrix}$.

Describe fully transformation Y.

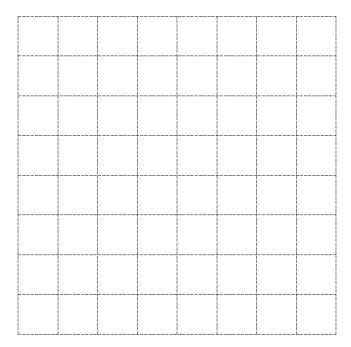
7. June/2022/Paper_4024/11/No.16

$$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

(a) On the unit grid below, draw and label vector **p**.



(b) On the unit grid below, draw and label vector 2q.



[1]

[1]

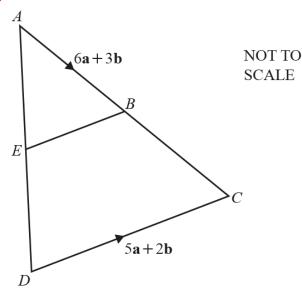
8. June/2022/Paper_4024/11/No.24

$$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 4 & 3 \end{pmatrix} \qquad \qquad \mathbf{N} = \begin{pmatrix} k & 0 \\ 1 & 4 \end{pmatrix}$$

Given that MN = NM, find the value of k.

$$k = \dots$$
 [3]

9. June/2022/Paper_4024/11/No.25



In triangle ACD, B is the midpoint of AC and E is the midpoint of AD. $\overrightarrow{AB} = 6\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{DC} = 5\mathbf{a} + 2\mathbf{b}$.

- (a) Express, as simply as possible, in terms of a and b.
 - (i) \overrightarrow{AC}

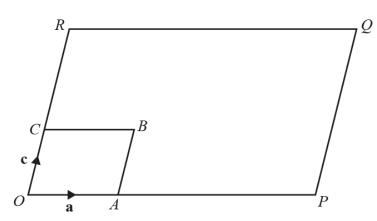
$$\overrightarrow{AC} = \dots$$
 [1]

(ii) \overrightarrow{AD}

$$\overrightarrow{AD} = \dots$$
 [2]

(b) Show that \overrightarrow{EB} is parallel to \overrightarrow{DC} .

10. June/2022/Paper_4024/12/No.25



NOT TO **SCALE**

OABC and OPQR are parallelograms.

A is a point on OP and C is a point on OR.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. OA : OP = 1 : 4 and OC : CR = 2 : 3.

(a) Find \overrightarrow{OR} in terms of c.

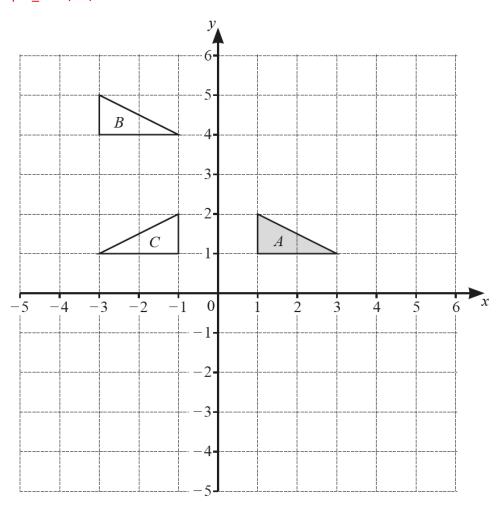
$$\overrightarrow{OR} = \dots$$
 [1]

(b) Find \overrightarrow{CQ} , as simply as possible, in terms of **a** and **c**.

$$\overrightarrow{CQ} = \dots [2]$$

(c) Find the ratio area OABC: area OPQR.

11. June/2022/Paper_4024/21/No.10



The diagram shows triangles A, B and C.

(a) Describe fully the single transformation that maps triangle A onto triangle B.

[2]

(b) Find the matrix representing the transformation that maps triangle A onto triangle C.

(c) Triangle A is mapped onto triangle D by an enlargement with centre (2, 3) and scale factor 3.

Draw triangle D. [2]

- 12. June/2022/Paper_4024/22/No.8
 - (a) The matrix A satisfies the following equation.

$$\begin{pmatrix} 2 & 3 \\ 5 & 2 \end{pmatrix} - 3\mathbf{A} = \begin{pmatrix} 5 & 3 \\ -4 & -1 \end{pmatrix}$$

Find A.

$$\mathbf{A} = \left(\begin{array}{c} \\ \end{array} \right) \quad [2]$$

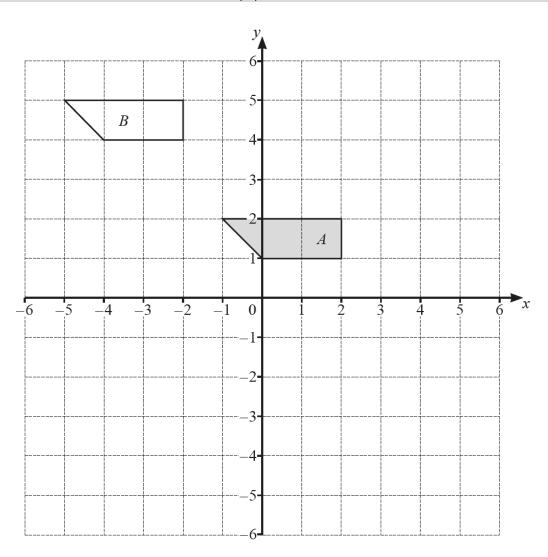
(b)
$$\mathbf{B} = \begin{pmatrix} 2 & -2 \\ 4 & p \end{pmatrix}$$

The determinant of **B** is 2.

Find the value of p and hence write down \mathbf{B}^{-1} .

$$\mathbf{B}^{-1} = \left(\begin{array}{c} \\ \end{array} \right) \quad [3]$$

(c)



The diagram shows shape A and shape B.

(i) Describe fully the **single** transformation that maps shape A onto shape B.

.....[2]

(ii) The transformation represented by the matrix $\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$ maps shape A onto shape C.

Draw and label shape C.