#### solvedpapers.co.uk

## <u>Trigonometry – 2021 O Level Additional Math</u>

1. Nov/2021/Paper\_12/No.4

Solve the equation  $\cot\left(2x + \frac{\pi}{3}\right) - \sqrt{3} = 0$ , where  $-\pi < x < \pi$  radians. Give your answers in terms of  $\pi$ .

## solvedpapers.co.uk

2. Nov/2021/Paper\_13/No.3

Solve the equation  $\cot^2(2x - \frac{\pi}{3}) = \frac{1}{3}$ , where x is in radians and  $0 \le x < \pi$ . [5]

# **3.** Nov/2021/Paper\_22/No.3

(a) Show that 
$$\frac{1}{\sec x - 1} + \frac{1}{\sec x + 1} = 2 \cot x \csc x$$
. [4]

**(b)** Hence solve the equation 
$$\frac{1}{\sec x - 1} + \frac{1}{\sec x + 1} = 3 \sec x$$
 for  $0^{\circ} < x < 360^{\circ}$ . [4]

## **4.** Nov/2021/Paper\_23/No.3



(a) The curve has equation  $y = a \cos bx + c$  where a, b and c are integers. Find the values of a, b and c.

**(b)** Another curve has equation  $y = 2 \sin 3x + 4$ . Write down

(i) the amplitude, [1]

(ii) the period in radians. [1]

## 5. Nov/2021/Paper\_23/No.5

(a) Show that 
$$\frac{1}{\csc x - 1} + \frac{1}{\csc x + 1} = 2 \tan x \sec x.$$
 [4]

**(b)** Hence solve the equation 
$$\frac{1}{\csc x - 1} + \frac{1}{\csc x + 1} = 5 \csc x$$
 for  $0^{\circ} < x < 360^{\circ}$ . [4]

- 6. June/2021/Paper\_11/No.9(ii)
  - (ii) Hence solve the equation  $6 \sin \theta \cos \theta + 3 \cos \theta + 4 \sin \theta + 2 = 0$  for  $0^{\circ} < \theta < 360^{\circ}$ . [4]

**(b)** Solve the equation  $\frac{1}{2}\sec\left(2\phi + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$  for  $-\pi < \phi < \pi$ , where  $\phi$  is in radians. Give your answers in terms of  $\pi$ .

#### 7. June/2021/Paper\_12/No.10

(a) Solve the equation  $\sin \alpha \csc^2 \alpha + \cos \alpha \sec^2 \alpha = 0$  for  $-\pi < \alpha < \pi$ , where  $\alpha$  is in radians. [4]

**(b)** (i) Show that 
$$\frac{\cos \theta}{1 - \sin \theta} + \frac{1 - \sin \theta}{\cos \theta} = 2 \sec \theta$$
. [4]

(ii) Hence solve the equation 
$$\frac{\cos 3\phi}{1-\sin 3\phi} + \frac{1-\sin 3\phi}{\cos 3\phi} = 4$$
 for  $0^{\circ} \le \phi \le 180^{\circ}$ . [4]

# **8.** June/2021/Paper\_24/No.8

(a) (i) Show that 
$$\frac{\cos^2 2x}{1 + \sin 2x} = 1 - \sin 2x$$
. [2]

(ii) Hence solve 
$$\frac{3\cos^2 2x}{1+\sin 2x} = 1$$
 for  $0^\circ \le x \le 90^\circ$ . [4]

**(b)** Solve 
$$\cot\left(y - \frac{\pi}{2}\right) = \sqrt{3}$$
 for  $0 \le y \le \pi$  radians. [3]