<u>Series – 2021 O Level Additional Math</u>

- 1. Nov/2021/Paper_13/No.4
 - (a) Find the first three terms, in ascending powers of x^2 , in the expansion of $\left(\frac{1}{2} \frac{2}{3}x^2\right)^8$. Write your coefficients as rational numbers. [3]

(b) Find the coefficient of x^2 in the expansion of $\left(\frac{1}{2} - \frac{2}{3}x^2\right)^8 \left(2x + \frac{1}{x}\right)^2$. [3]

Nov/2021/Paper_13/No.5
--

A geometric progression is such that its sum to 4 terms is 17 times its sum to 2 terms. It is given that the common ratio of this geometric progression is positive and not equal to 1.

(a) Find the common ratio of this geometric progression.

[3]

(b) Given that the 6th term of the geometric progression is 64, find the first term.

[2]

(c) Explain why this geometric progression does not have a sum to infinity.

[1]

- 3. Nov/2021/Paper_22/No.2
 - (a) Expand $(2-3x)^4$, evaluating all of the coefficients. [4]

(b) The sum of the first three terms in ascending powers of x in the expansion of $(2-3x)^4 \left(1 + \frac{a}{x}\right)$ is $\frac{32}{x} + b + cx$, where a, b and c are integers. Find the values of each of a, b and c. [4]

4.	Nov	/2021	/Paper	22	/No	10
→.	INUV	/ 2021	/ rapei	~~	OWL	· TO

(a) The first three terms of an arithmetic progression are x, 5x-4 and 8x+2. Find x and the common difference. [4]

[4]

- (b) The first three terms of a geometric progression are y, 5y-4 and 8y+2.
 - (i) Find the two possible values of y.

(ii) For each of these values of y, find the corresponding value of the common ratio. [2]

5. Nov/2021/Paper_23/No.9

An arithmetic progression has first term a and common difference d. The third term is 13 and the tenth term is 41.

(a) Find the value of a and of d.

[4]

[4]

(b) Find the number of terms required to give a sum of 2555.

(c) Given that S_n is the sum to n terms, show that $S_{2k} - S_k = 3k(1+2k)$. [4]

6. June/2021/Paper_11/No.4

The first 3 terms in the expansion of $(a+x)^3(1-\frac{x}{3})^5$, in ascending powers of x, can be written in the form $27+bx+cx^2$, where a, b and c are integers. Find the values of a, b and c. [8]

7. June/2021/Paper_12/No.9

(a) The first three terms of an arithmetic progression are -4, 8, 20. Find the smallest number of terms for which the sum of this arithmetic progression is greater than 2000. [4]

- **(b)** The 7th and 9th terms of a geometric progression are 27 and 243 respectively. Given that the geometric progression has a positive common ratio, find
 - (i) this common ratio, [2]

(ii) the 30th term, giving your answer as a power of 3. [2]

(c) Explain why the geometric progression 1, $\sin \theta$, $\sin^2 \theta$, ... for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, where θ is in radians, has a sum to infinity.

- 8. June/2021/Paper_14/No.3
 - (a) Find the first 3 terms in the expansion, in ascending powers of x, of $(a-3x)^{10}$, where a is a constant.

(b) Given that a is positive and that the three terms found in **part** (a) can also be written as $p+qx+\frac{405}{256}x^2$, find the value of each of the constants a, p and q. [3]

June/2021/Paper_21/	/No.:	11
---------------------------------------	-------	----

The 2nd, 8th and 44th terms of an arithmetic progression form the first three terms of a geometric progression. In the arithmetic progression, the first term is 1 and the common difference is positive.

(a) (i) Show that the common difference of the arithmetic progression is 5. [5]

(ii) Find the sum of the first 20 terms of the arithmetic progression.

[2]

SO	lved	na	nei	rs.	CO	иk
30	ivcu	μu	pι	J.	CO.	.ur

(b) (i) Find the 5th term of the geometric progression. [2]

(ii) Explain whether or not the sum to infinity of this geometric progression exists. [1]

10. June/2021/Paper_22/No.1

Using the binomial theorem, expand $(1 + e^{2x})^4$, simplifying each term. [2]

1	1.	June	/2021	/Paper_	24/	No.12
-	- •	3 41.10		, . apc	,	

(a) The first term of an arithmetic progression is -5 and the fifth term is 7. Find the sum of the first 40 terms of this progression. [4]

(b) A geometric progression has third term of 8 and sixth term of 0.064. Find the sum to infinity of this progression. [4]