Nuclear physics – 2021 O Level 5054

1. Nov/2021/Paper_11/No.38

Technetium-99m is a radioactive isotope used in medical scanning. It is injected into the body and its emissions are detected outside the body.

Which characteristics of technetium-99m make it suitable for use in medical scanning?

- A It has a long half-life and emits alpha radiation.
- B It has a long half-life and emits gamma radiation.
- C It has a short half-life and emits alpha radiation.
- **D** It has a short half-life and emits gamma radiation.

2. Nov/2021/Paper_11/No.39

Which statement about the production of electricity in a nuclear power station is correct?

- A In the reactor, the main reaction occurs when protons hit uranium nuclei.
- **B** The process taking place in the reactor is called nuclear fusion.
- **C** The reactor produces energy to boil water and to produce steam.
- **D** Carbon dioxide is the major waste product from the reactor.

3. Nov/2021/Paper_11/No.40

In the simple model of an atom, X orbits around Y.

What are X and Y?

	Х	Y
Α	electron	nucleus
В	neutron	electron
С	nucleus	proton
D	proton	neutron

4. Nov/2021/Paper 12/No.37

Which statement about the production of electricity in a nuclear power station is correct?

- A In the reactor, the main reaction occurs when protons hit uranium nuclei.
- **B** The process taking place in the reactor is called nuclear fusion.
- C The reactor produces energy to boil water and to produce steam.
- **D** Carbon dioxide is the major waste product from the reactor.

5. Nov/2021/Paper 12/No.38

A radioactive sample contains an isotope that emits alpha particles.

Which quantity stays constant?

- A the half-life of the isotope
- B the mass of the sample
- C the number of neutrons in the sample
- **D** the rate of decay of the isotope

6. Nov/2021/Paper_12/No.39

In the simple model of an atom, X orbits around Y.

What are X and Y?

	Х	Y		
Α	electron	nucleus		
В	neutron	electron		
С	nucleus	proton		
D	proton	neutron		

7. Nov/2021/Paper_12/No.40

How do the proton numbers (atomic numbers) and the nucleon numbers (mass numbers) of two different isotopes of the same element compare with each other?

	proton number	nucleon number	
Α	different	different	
В	different	same	
С	same	different	
D	same	same	

8. Nov/2021/Paper 21/No.1	8.	Nov	/2021	/Paper	21	/No.1
---------------------------	----	-----	-------	--------	----	-------

The isotope yttrium-90 ($^{90}_{39}$ Y) is radioactive. It is a beta-particle emitter that decays to product Q. Product Q is stable.

(a) State one feature that is common to all isotopes of yttrium.

......[1]

(b) Describe how a neutral atom of Q differs from a neutral atom of yttrium-90.

......

(c) A sample of yttrium-90 is placed close to a radiation detector in a laboratory. There are no other radioactive samples in the laboratory. A counter records the count rate.

Fig. 10.1 is a graph of the count rate plotted against time.

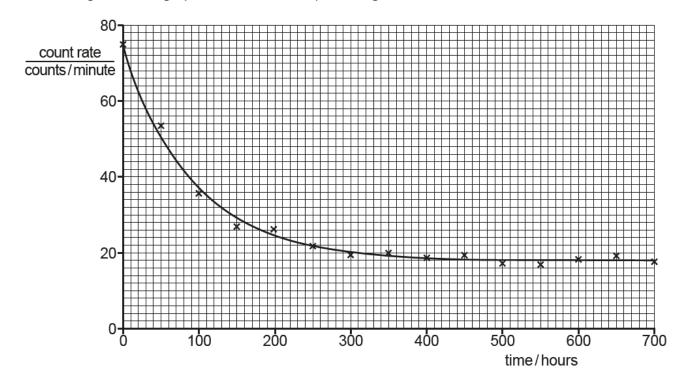


Fig. 10.1

(i) Using Fig. 10.1, determine the average background count rate.

average background count rate =[1]

	solvedpapers.co.uk
(ii)	Suggest two different origins for the background count.
	1
	2[2]
····	
(iii)	Using Fig. 10.1, determine the half-life of yttrium-90. Show how the answer is obtained.
	half-life =[4]
(iv)	Many of the points plotted in Fig. 10.1 do not lie on the best-fit line.
	Explain why.
	Explain Wily.
	[2]
	eam of beta-particles, travelling in a vacuum, enters the region between two parallel, metal ses. One plate is negatively charged and the other is positively charged.
	,

Fig. 10.2 shows the arrangement.

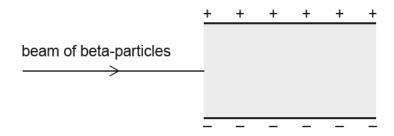


Fig. 10.2

On Fig. 10.2, draw the path taken by the beta-particles as they travel between the two plates.

[2]

[Total: 15]

Nov/2021/Paper 22/No	9. 1	VOV.	/2021	/Paper	22	/No.	6
--	------	------	-------	--------	----	------	---

Isotope X is radioactive. It decays by alpha-particle emission to a stable isotope.

(a) State how a nucleus of X changes when it emits an alpha-particle. (b) There is a radiation detector in a laboratory where there are no radioactive samples. The detector is switched on and shows an average count rate of 22 counts/minute. State why the radiation detector shows a count rate. (i) (ii) A sample of isotope X is placed 2cm from the detector and the reading displayed is 8000 counts/minute. The sample is moved a distance of 10 cm from the detector. The reading returns to an average value of 22 counts/minute. Explain why the reading returns to the original value.

(c) An alpha-particle passes into a region where there is a magnetic field. In the magnetic field, a force acts on the alpha-particle so that it follows a circular path. Fig. 6.1 shows that the particle passes through point J.

......[2]

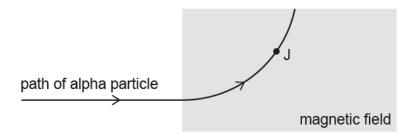


Fig. 6.1

(i) On Fig. 6.1, draw an arrow through point J to show the direction of the force on the alpha-particle at J. [1]

this direction.				
		to the left		
		to the right		
		towards the top of the page		
		towards the bottom of the page		
		into the page		
		out of the page [1]		
(iii)		n whether this force does work on the alpha-particle as the particle moves along cular path.		
		[2]		
		[Total: 9]		

10. June/2021/Paper_11/No.37

Which statement about nuclear fusion is correct?

- A Nuclear fusion occurs at low temperatures.
- B Nuclear fusion occurs only between heavy nuclei.
- C Nuclear fusion occurs in the formation of many stars.
- **D** Nuclear fusion powers most electricity-generating stations.

11. June/2021/Paper_11/No.38

In one radioactive decay, radium-226 decays to radon-222 as shown.

$$^{226}_{88}$$
Ra $ightarrow$ $^{222}_{86}$ Rn

Which particles are also produced?

- A both an alpha-particle and a beta-particle
- B an alpha-particle only
- C a beta-particle only
- **D** a neutron

12. June/2021/Paper_11/No.39

The count rate from a radioactive source falls from 4000 counts per minute to 500 counts per minute in 72 minutes.

What is the half-life of the source?

- A 8 minutes
- B 9 minutes
- C 18 minutes
- **D** 24 minutes

13. June/2021/Paper 11/No.40

Which particles are found inside the nucleus of an atom?

- A neutrons and electrons
- B electrons and protons
- C neutrons only
- D neutrons and protons

14. June/2021/Paper_12/No.39

What does an alpha-particle consist of?

- A two electrons and four neutrons only
- **B** two protons and two neutrons only
- **C** two protons and four neutrons only
- **D** two protons, two electrons and two neutrons

15. June/2021/Paper_12/No.40

The count rate from a radioactive source falls from 4000 counts per minute to 500 counts per minute in 72 minutes.

What is the half-life of the source?

- A 8 minutes
- B 9 minutes
- C 18 minutes
- **D** 24 minutes

16. June/2021/Paper_21/No.10

Table 10.1 contains details of the nature and some properties of alpha, beta and gamma emissions.

Table 10.1

	alpha	beta	gamma
nature	2 protons and 2 neutrons		
charge		negative	
penetrating power		stopped by 5 mm of aluminium	

(a) Complete Table 10.1 by filling in the missing details.

[6]

(b) Surgical instruments in sealed plastic bags are placed in thin plastic boxes. A conveyor belt takes the boxes close to a cobalt-60 source which sterilises the instruments.

This is shown in Fig. 10.1.

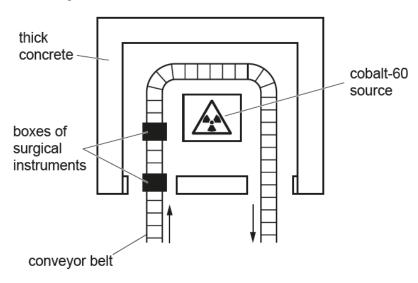
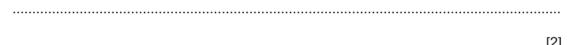



Fig. 10.1 (viewed from above)

The cobalt-60 source is a radioactive isotope of cobalt that emits gamma-radiation.

(i) Describe what is meant by the term *isotope*.

(ii) Suggest a property of gamma-radiation that enables it to sterilise the instruments in the bags in the boxes.

......[1]

(111)	State why a source emitting only alpha-radiation cannot be used in this way.				
	[1]				
(iv)	The half-life of cobalt-60 is 5.3 years.				
	Explain why a source with a half-life of 5.3 minutes is unsuitable for use in this application.				
	[1]				
	ger and Marsden performed an experiment in which alpha-particles were fired at a thin of gold.				
(i)	Fig. 10.2 shows an alpha-particle passing close to the nucleus of a gold atom.				
	path of alpha-particle				
	nucleus of gold atom				
	Fig. 10.2				
	Explain why the alpha-particle is deflected.				
	[2]				
(ii)	In the experiment, most of the alpha-particles pass straight through the foil without deflection.				
	Explain, using ideas about the structure of the atom, why this happens.				
	[2]				
	(iv) Geiq film (i)				

[Total: 15]

17. June/2021/Paper_22/No.11

A highly radioactive source that emits beta-particles is placed a few centimetres away from a detector, as shown in Fig. 11.1.

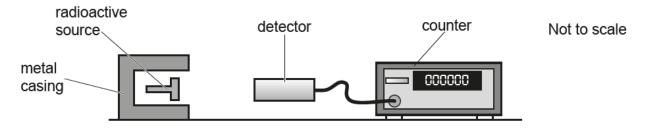


Fig. 11.1

(a)	Stat	te the name of the particle which has the same mass and charge as a beta-particle.	
			[1]
(b)	Stat	te and explain why the metal casing in Fig. 11.1 is used.	
			[2]
(c)		te and explain what happens to the number of particles detected in a minute as oactive source is moved:	the
	(i)	a few centimetres further away from the source	
			[2]
	(ii)	more than a metre away from the source.	
			[2]

(d) A nucleus of strontium-90 (Sr-90) decays by beta emission to a nucleus of yttrium (Y).
Complete the decay equation for this decay.

$$^{90}_{38} \text{Sr} \rightarrow ^{\cdots}_{-1} \text{Y} + ^{\cdots}_{-1} \beta$$

[3]

(e) Nuclear fusion and nuclear fission both release large amounts of energy.

(i)	Describe how the process of nuclear fusion differs from the process of nuclear fission.

• • • • • • • • • • • • • • • • • • • •	 	 	

	[3]
--	-----

(ii) Describe the conditions needed for nuclear fusion to take place.

[Total: 15]