Equations, inequalities and graphs – 2021 O Level Additional Math

1. Nov/2021/Paper_12/No.5

Find the possible values of the constant c for which the line y = c is a tangent to the curve $y = 5 \sin \frac{x}{3} + 4$.

2. Nov/2021/Paper_13/No.8

The curves $y = x^2 + x - 1$ and $2y = x^2 + 6x - 2$ intersect at the points A and B.

(a) Show that the mid-point of the line AB is (2, 9).

[5]

The line l is the perpendicular bisector of AB.

(b) Show that the point C(12, 7) lies on the line l.

[3]

(c) The point D also lies on l, such that the distance of D from AB is two times the distance of C from AB. Find the coordinates of the two possible positions of D. [4]

3. Nov/2021/Paper_22/No.1

- (a) On the axes, draw the graphs of y = 5 + |3x 2| and y = 11 x. [4]
- (b) Using the graphs, or otherwise, solve the inequality 11-x < 5+|3x-2|. [2]

- **4.** Nov/2021/Paper_22/No.9
 - (a) Find the equation of the normal to the curve $y = x^3 + x^2 4x + 6$ at the point (1, 4). [5]

(b) DO NOT USE A CALCULATOR IN THIS PART OF THE QUESTION.

Find the exact x-coordinate of each of the two points where the normal cuts the curve again. [5]

5. Nov/2021/Paper_23/No.1

- (a) On the axes draw the graphs of y = |x-5| and y = 6 |2x-7|. [4]
- (b) Use your graphs to solve the inequality |x-5| > 6 |2x-7|. [2]

6. June/2021/Paper_11/No.1

(a) On the axes, sketch the graph of y = 5(x+1)(3x-2)(x-2), stating the intercepts with the coordinate axes. [3]

(b) Hence find the values of x for which 5(x+1)(3x-2)(x-2) > 0. [2]

7. June/2021/Paper_12/No.2

(a) On the axes, sketch the graph of y = |4-3x|, stating the intercepts with the coordinate axes. [2]

(b) Solve the inequality $|4-3x| \ge 7$.

[3]

8. June/2021/Paper_14/No.1

(a) On the axes below, sketch the graph of $y = 6\cos 2x - 1$ for $0^{\circ} \le x \le 360^{\circ}$.

(b) The graph of $y = a + b \sin c \theta$ for $-180^{\circ} \le \theta \le 180^{\circ}$ is shown below.

Write down the value of each of the constants a, b and c.

[2]

$$b = \dots$$

9. June/2021/Paper_14/No.2

(a) On the axes below, sketch the graphs of y = |x - 3| and $y = \left| \frac{2}{5}x \right|$, giving the coordinates of the points where the graphs meet the axes. [3]

(b) Solve the equation
$$\left| \frac{2}{5}x \right| = |x-3|$$
. [2]

10. June/2021/Paper_21/No.3

(a) Solve the inequality |4x-1| > 9. [3]

(b) Solve the equation $2x - 11\sqrt{x} + 12 = 0$. [3]

11. June/2021/Paper_21/No.4

The graph of $y = a + 2 \tan bx$, where a and b are constants, passes through the point (0, -4) and has period 480° .

(a) Find the value of a and of b.

[3]

(b) On the axes, sketch the graph of y for values of x between 0° and 480° .

[2]

12. June/2021/Paper_22/No.2

On the axes, sketch the graph of y = 3(x-3)(x-1)(x+2) stating the intercepts with the coordinate axes. [3]

13. June/2021/Paper_22/No.6

The points A(5, -4) and C(11, 6) are such that AC is the diagonal of a square, ABCD.

(a) Find the length of the line AC.

[2]

(b) (i) The coordinates of the centre, E, of the square are (8, y). Find the value of y.

[1]

(ii) Find the equation of the diagonal BD.

[3]

(iii) Given that the x-coordinate of B is less than the x-coordinate of D, write \overrightarrow{EB} and \overrightarrow{ED} as column vectors.